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USING UNSUPERVISED CLASSIFICATION TECHNIQUES AND THE 
HYPSOMETRIC INDEX TO IDENTIFY ANTHROPOGENIC LAND-

SCAPES THROUGHOUT AMERICAN SAMOA

STEPHANIE S. DAY
North Dakota State University

Locating ancient and historic settlements and other anthropogenically 
modified areas that have been abandoned is a challenging task. These areas 
are likely small, and they are typically obscured by vegetation and the 
redistribution of sediment. In many locations, the terrain may be difficult 
for investigators to traverse, and anthropogenic features may be subtle. A 
variety of remote sensing technologies are now improving our ability to locate 
prehistoric anthropogenic landscapes around the world. While much of the 
current remote sensing in the archaeological literature focuses on satellite 
imagery (i.e., Garrison et al. 2008; Gupta et al. 2017; Lasaponara et al. 
2016; Law et al. 2017), the use of aerial LiDAR is also widespread. Aerial 
LiDAR is particularly ideal in places where dense vegetation obscures the 
ground surface from satellite imagery and where anthropogenic modifications 
have left a topographic signature, both of which are true in many locations 
throughout the Pacific (Chase et al. 2010; Freeland et al. 2016; McCoy et al. 
2011; Parcak 2009).This includes the islands of American Samoa.

The ability of aerial LiDAR to capture high-resolution data on the earth’s 
surface, even through dense vegetation, has shifted how we understand the 
natural variability of a landscape and the modifications that people make to 
it. In American Samoa, most prehistoric landscape modifications focused on 
creating flat terraces in the steep interior for residential and non-residential 
(e.g., agricultural) activities (Quintus 2015; Quintus et al. 2015). Additional 
modifications were made by creating large steep-sided mounds with flat 
tops, referred to as star mounds, which were used for chiefly sports and 
ceremonial purposes (Herdrich 1991), as well as ditches used for routing 
water and sediment or as land boundaries (Quintus 2015; Quintus and Clark 
2012), and walls for dividing fields (Quintus et al. 2017). Of all of the 
prehistoric anthropogenic modifications in American Samoa, terraces are 
the most widespread and are present in nearly all known settlements; star 
mounds, ditches and walls are not. Flat surfaces are therefore the focus of 
this paper and will be referred to as terraces throughout. It is important to 
note that other flat surfaces, including those that were not artificially created, 
will be identified with this methodology, yet on this steep terrain these are 
still potential areas of anthropogenic activity. 

Journal of the Polynesian Society, 2018, 127 (1): 55-72; 
DOI: http://dx.doi.org/10.15286/jps.127.1.55-72
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Flat terraces disrupt the natural slope by representing a notch cut into 
it. While this modification certainly impacts local slope, it also impacts 
other topographic measures, including the one addressed here: hypsometry. 
Hypsometry is defined as a measure of elevation relative to sea level. 
Geomorphologists have used this measure to examine hillslope processes by 
creating a non-dimensional curve and hypsometric index (HI). On a hillslope 
scale, high HI values are associated with unstable basins or diffusive processes 
while lower HI values (<0.5) are stable or dominated by fluvial processes 
(Schumm 1956; Strahler 1964; Willgoose and Hancock 1998). HI is defined as
        
                    

               (Eq. 1)

where Emean is the mean elevation, Emax is the maximum elevation value and 
Emin is the minimum elevation value. On a completely flat surface, HI is 
undefined because Emean = Emax = Emin. For any even slope where there is no 
variation HI will be 0.5 because Emean will be exactly equidistant between 
Emax and Emin. Departure between these two values occurs when any variation 
exists in the slope. In the case of terraces, the HI value will vary based on 
the computational area and location being considered. If evenly distributed 
terraces are being considered over a large sloped area, the HI value will be 
0.5. This is because although the elevations are distributed differently, Emean, 
Emax and Emin do not change. If a smaller computational area is used and only 
a portion of the terrace is considered, the HI values will vary from nearly 
1 at the downslope edge to nearly 0 at the upslope edge depending on if 
Emean approaches Emax or Emin (Fig.1). The idea of creating a small moving 
window and measuring the HI value within that window was first introduced 
as a measure of topographic roughness and is also referred to as the relative 
topographic position or topographic position index (Jenness 2004). In this 
paper, it is used to identify patterns of anthropogenic landscapes specifically 
focused on the signature of terraces and other flattened surfaces. This index 
may provide an advantage over a simpler slope classification as it can account 
for areas that were artificially flattened but do not adhere to the typical very 
low slope definitions used for terraces.

In addition to taking advantage of HI to identify anthropogenic landscapes, 
I also attempt to automate the process by creating a combined dataset that is 
then used for an unsupervised classification. Other researchers have applied 
supervised classifications to highlight different anthropogenic landscapes in 
American Samoa (e.g., Quintus et al. 2015; Rieth et al. 2008). Unsupervised 
classification provides a unique advantage over supervised classification 
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because it can be used in areas where specific class locations or breakpoints 
are unknown. In the case of American Samoa, large-scale anthropogenic areas 
are well documented on some islands (Ofu and Olosega: see Quintus 2011, 
2015, 2018; Quintus and Clark 2012, 2016; Quintus et al. 2015) and poorly 
defined on other islands (Tutuila: Clark and Herdrich 1988, 1989, 1993; 
Frost 1976, 1978; Kikuchi 1963; Pearl 2004). I can identify the classification 
parameters first by using known anthropogenic areas and then extend the 
method to other areas. 

Site Description
American Samoa is made up of five main islands and two coral atolls. The 
islands are part of the Sāmoan Archipelago, which also includes the islands 
of the Independent State of Samoa. The islands are all volcanic in origin, 
with a clear west-to-east trend of younger islands. Tutuila, the oldest and 
largest island in American Samoa, is also the most dissected. Well-developed 
channels have carved the uplands creating a rugged inland topography. 
Aunu‘u, which lies to the southeast of Tutuila, was likely formed at the same 
time as Tutuila (Natland 1980) and is included in the Tutuila dataset for this 
paper. Ofu and Olosega lie 96 km east of Tutuila and formed at approximately 
the same time geologically. These islands are separated by a narrow channel, 
which today is spanned by a bridge. Unlike Tutuila, many areas of the uplands 
of Ofu and Olosega have not been dissected by channels, leaving large areas 
of sloped interior. Furthest east is Ta‘ū, which lies 10 km southeast of Olosega. 
Ta‘ū is the youngest island in American Samoa and as such is the least 
dissected. Only a few young channels exist on this island, leaving much of 
the interior undissected. It is in these evenly sloped, undissected areas of the 
interior that anthropogenic landscapes are most likely to be found. Channel 
valleys were difficult places to settle as these areas generally are steep and 
subject to more erosion.

This study focuses on the islands of Tutuila, Ofu and Olosega. Ta‘ū is 
excluded because aerial LiDAR data are not available for the entire island, 
and the most well-documented anthropogenic area has walled terraces rather 
than the classic cut-fill terraces present on the other islands in American 
Samoa (Quintus et al. 2017). 

METHODS

LiDAR data collection was funded by NOAA and the American Samoa 
Government, and collected in 2012 by Photo Science Inc. LiDAR point clouds 
were then processed to create one-metre bare-earth digital elevation models 
(DEMs). All the following products used in this project were derived from 
these DEMs using ArcGIS v10.3.
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Hypsometry
As described above, hypsometry is a way of simplifying landscape variability 
in such a way that it can be described by a curve or by a single number. While 
hypsometry is typically calculated on the scale of an entire landscape, hillslope 
or watershed, here I am using it on a smaller scale to examine topographic 
roughness. This approach allows us to examine change across the landscape 
and to locate areas potentially modified by humans.

Each input for the hypsometric index equation (Eq. 1) was found using 
the focal statistics tool. This tool uses a moving window to calculate the 
mean, minimum and maximum values of the DEM for a defined window. 
For this project, 10 ×10, 20 × 20 and 30 × 30 m windows were used, as these 
window sizes scale approximately with the features of interest. After the 
raster products were derived, the raster calculator was used to calculate HI 
values for each cell.

Variability of HI values was also computed. HI values are likely to have 
high variability in anthropogenic landscapes with closely spaced terraces and 
lower variability on ridge tops or unmodified slopes. Variability was measured 
using the focal statistics tool to measure range and standard deviation within 
a 100 × 100 m window. The 20 × 20 m HI values were used to measure this 
variability because this window size preserves the large details of these 
anthropogenic features while smoothing the subtle variation expected in the 
natural landscape. Additionally, each factor in the HI equation was squared, 
and an HI-squared value was calculated. This value emphasises subtle 
differences in HI. The HI-squared parameter can be particularly beneficial 
in areas where the differences in HI are subtle, such as on sloped terraces. 

Classification
To perform the classification, five composite band raster datasets were created. 
These composite raster datasets are made up of four to six bands of raster 
data selected from derived data sets including the 10 ×10 m moving window 
HI, the 20 ×20 m moving window HI, the 30 ×30 m moving window HI, the 
20 ×20 m moving window HI squared, the slope, the 100 ×100 m moving 
window of the standard deviation of the 20 ×20 m moving window HI, 
and the 100 ×100 m moving window of the range of the 20 ×20 m moving 
window HI (Table 1). 

Unsupervised classification was performed using all five composite 
datasets for Ofu and Olosega as well as Tutuila. The iso cluster 
unsupervised classification tool in ArcGIS was used to classify the data. 
This type of classification groups pixels that have similar values in each 
band of the composite dataset. The number of classes needed to best 
capture anthropogenic landscapes was tested on Ofu and Olosega, where 
anthropogenic areas have been well documented (Quintus 2011, 2015, 
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2018; Quintus and Clark 2012, 2016; Quintus et al. 2015). It was found 
that using three to five classes was most appropriate, because when more 
classes were used two or more classes in combination captured the known 
anthropogenic areas, and fewer classes combined non-modified areas with 
areas of anthropogenic modification. Visual inspection was used to identify 
what class or classes corresponded to known anthropogenic areas, or in the 
case of Tutuila, areas that appeared to be anthropogenically modified based 
on the DEM and associated derived products. 

After classification was complete, confusion matrixes were created for 
each classification completed for Ofu and Olosega (Story and Congalton 
1986). Accuracy, precision, true positive and true negative were all calculated 
from the confusion matrixes on the full island scale. In addition, the true 
positive rate was calculated for each individual anthropogenically modified 
area as described by Quintus (this issue).This step highlighted how different 
classifications were better for different anthropogenic areas.

RESULTS

Based on visual observation, moving-window hypsometry highlighted 
terraced areas. This made them easier to identify when compared with 
the DEM and hillshade alone. Areas of known or probable prehistoric 
anthropogenic landscapes could be identified even when examining the data 
over large areas because of the stark contrast between the flat terrace and 
the sloped areas between (Fig. 2). The classification results below quantify 
how successful moving-window hypsometry is at identifying anthropogenic 
landscapes. Results from Ofu and Olosega are discussed separately from 
Tutuila, as the locations of prehistoric modifications are better documented 
on these two islands. 

Table 1.  Composite raster datasets tested.
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Figure 2.  This area showing terraces on Olosega demonstrates the contrast 
between high-HI areas near the upslope areas of the terrace and low-HI 
areas at the downslope edge of the terrace.

Ofu and Olosega
The total area delineated as interior anthropogenic landscapes for Ofu 
and Olosega makes up 23% of the island area where there is no modern 
anthropogenic modification (interior anthropogenic area = 2.7 km2, modern 
anthropogenic area = 0.73 km2, total island area = 12.5 km2). A total of 14 
classifications were completed, for five composite datasets and the slope 
classification, to automatically identify the areas of anthropogenic landscapes. 
All but four classifications overestimated the total anthropogenic area 
finding that 20 to 36% of the island where there is no modern anthropogenic 
modification has evidence of prehistoric modification. Accuracy and precision 
ranged from 58 to 78% and 16 to 53% respectively for all classifications 
(Table 2). While slope had the highest accuracy along with all other composite 
datasets that included slope (1, 3 and 4), the precision for slope alone was 
slightly lower than those composite datasets where slope and hypsometry 
was combined. In addition, the composite data sets that included slope also 
had higher true positive and true negative rates than slope alone. 

The composite datasets that did not include slope (2 and 5) had the lowest 
rates of accuracy, precision, true positives and true negatives when considering 
all anthropogenic areas on the islands combined. When the true positive rate 
for each anthropogenic area is considered individually those composite datasets 
without slope have the greatest true positive rates at both Sili-i-uta and Sili-
i-uta South; in the case of Sili-i-uta, composite datasets 2 and 5 had a true 
positive rate 20% higher than found for all other composite datasets (Fig. 3).
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Table 2.  Classification results for Ofu and Olosega.

The combined effectiveness of the four composite datasets that were the 
best for each anthropogenic area, classifications 2/5, 3/3, 3/4 and 5/5 (where 
the convention is: composite #/# of classes), was examined (Fig. 4). Using 
this combined dataset, 4 to 31% of each anthropogenic area was classified 
appropriately by all four datasets, and 65 to 93% of the anthropogenic area 
was identified correctly by at least one dataset. 

Tutuila
On Tutuila, only a limited number of known interior prehistoric anthropogenic 
areas exist (Clark and Herdrich 1993; Pearl 2004), with the assumption that 
many more likely exist than have been formally identified. As a result, the 
calculation of formal confusion-matrix statistics is impossible; rather, these 
data can be used to reveal general anthropogenic trends and identify areas 
of likely anthropogenic landscapes. 
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Figure 4.  Classifications 2/5, 3/3, 3/4 and 5/5 were combined to find the total area 
in each anthropogenic area captured by one, two, three or all four of 
these datasets. Moving down through each column, the darker shades of 
grey indicate the number of datasets identifying that fraction of the total 
anthropogenic area where black is all four datasets and white is none 
of the datasets. Note that for “Not Anthropogenic” ideally none of the 
datasets would identify that area as anthropogenic.

The same set of composite datasets was used for classification on Tutuila 
as those used on Ofu and Olosega. The only modification made was that 
composites 2 and 5 were only classified using five classes as this was revealed 
to be the most effective. Unlike on Ofu and Olosega, it was not clear which 
class corresponded to the likely anthropogenic areas for composites 2 and 5 
with two potential candidates for both classifications; therefore two classes 
are reported for both of these classifications. For all classifications, 7 to 
23% (averaging 12.7%) of the island is classified as likely anthropogenic 
landscapes (Table 3). 

A combined dataset was created for Tutuila using all available composite 
dataset classifications. In total, ten datasets were combined, but because 
two were based on the same classification (yet represent two separate 
classes) the maximum number of datasets that could classify a given area as 
anthropogenic is eight. Figures 5 and 6 show the cumulative percent of island 
area represented as anthropogenic by a decreasing number of classifications. 
Four or more classifications identify 12% of the island as anthropogenically 
modified, and they appear to capture all known anthropogenic areas as well 
as most areas observed as likely anthropogenic based on the hypsometry 
moving-window dataset and the hillshade.
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Table 3.  Results from Tutuila classification.

Figure 5.  All classifications were combined on Tutuila to highlight areas that 
were most likely anthropogenic. The graph above shows the total 
area of the island classified as anthropogenic by a decreasing number 
of classifications. For this analysis it was determined that the areas 
that were most likely to be true positives were those identified as 
anthropogenic in at least four classifications. Those areas with three or 
fewer classifications were determined to be likely unmodified areas.
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Figure 6.  These maps show the results of combining classifications on Tutuila. 
Those areas classified as settled by four or more classifications are the 
areas most anticipated to be anthropogenic landscapes. 
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DISCUSSION

The use of a moving-window hypsometric index to model topographic 
roughness is an effective tool for identifying anthropogenic modification on 
complex landscapes. Simply as a visualisation tool, this technique highlights 
the changes in slope in anthropogenic areas. In addition, unsupervised 
classification is effective at delineating anthropogenic areas. While there 
was no classification that captured the complete known anthropogenically 
modified area, each known anthropogenic area was identified partially, and 
the high accuracy achieved is a strong indicator of success. Currently there 
is no method that consistently and completely identifies anthropogenic 
modification and therefore this method has advanced our ability to quickly 
identify anthropogenic landscapes with accuracy. In areas where the 
distribution of anthropogenic modification is unknown this technique 
can provide a first pass at identifying areas of interest that require further 
investigation, yet it is critical to note that those areas not identified may also 
have features of interest and should be surveyed where possible or before 
any modern modification to a potential site occurs. 

Classification on Ofu and Olosega
For most anthropogenic landscapes, the inclusion of slope in the composite 
dataset appeared to improve identification, but for those anthropogenic areas 
like Sili-i-uta (where slopes are higher) excluding slope from the composite 
dataset greatly improved classification. Because most interior anthropogenic 
landscapes can be defined as areas of low slope, it is unsurprising that 
when slope is included in the composite dataset it becomes the strongest 
classification indicator. While the exclusion of slope in the composite dataset 
does reduce the true positive rate for anthropogenic landscapes that adhere 
to the defined slope relationship, it markedly increases the true positive rate 
for those areas that do not have large areas of low slope. 

Combining classification results may be useful in identifying diverse 
anthropogenic landscapes and improving confidence in some areas. Where 
classification results are combined those locations present in all classifications 
are very likely to be true positives. On Ofu and Olosega, where four 
datasets were combined, only 2% of the area that is currently identified 
as unmodified interior was identified as anthropogenically modified by all 
classifications. Because field surveys do not exist for all areas of Ofu and 
Olosega, it is possible that these areas that were consistently identified as 
likely anthropogenic by all classifications are unidentified anthropogenic 
areas such as settlements, star mounds or fortifications that have a similar 
topographic signature. For all known anthropogenic areas at least 50% of 
the area was identified by two or more classifications. 
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Based on visual inspection of these data, the areas that were most likely to 
be identified by all classifications were near the centre of the anthropogenically 
modified area in the most seaward position. The areas of the anthropogenically 
modified area least likely to be identified are those areas furthest upslope 
or along the edges of the modified area (Fig. 7). This trend follows well-
documented Polynesian settlement dynamics where the most prestigious areas 
of a settlement are either in the centre of the settlement or in the centrally 
located most seaward position (Mead 1969; Quintus and Clark 2016; Shore 
1982). These areas also typically have the largest features. It appears that on 
Ofu and Olosega all datasets are capable of identifying these documented 
settlement cores, which have been noted as likely residential areas, yet have 
less success near the periphery, which is likely dominated by agricultural 

Figure 7.  The greatest number of classifications identify the most seaward and 
central areas of the anthropogenic area, while the periphery is less well 
identified. This holds true for all known anthropogenic landscapes. The 
examples provided are: (A) Tamatupu: ocean east of anthropogenic 
landscape, (B) Ofu: ocean west of anthropogenic landscape and (C) 
Sili-i-uta: ocean north and east of anthropogenic landscape.
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activity (Quintus and Clark 2016). The extent to which classification can 
identify these types of dynamics is unclear, yet because the data appear to 
follow well documented trends this may suggest that classification could 
provide insight into how anthropogenic areas developed.

Classification on Tutuila
As noted earlier, there are few well-documented prehistoric interior 
anthropogenic areas on Tutuila. Three settlements (Lefutu, Old Vatia and 
Levaga Village) have been described, and others have been speculated but 
remain undocumented (Clark and Herdrich 1988, 1989, 1993; Frost 1976, 
1978; Kikuchi 1963; Pearl 2004). Part of the difficulty with identifying 
anthropogenic landscapes in the interior of Tutuila is the size of the island. 
Tutuila is 11 times the size of Ofu and Olosega combined. In addition, deeply 
dissected river valleys make the terrain more rugged than on Ofu and Olosega. 
As a result, having a methodology to identify areas where anthropogenic 
landscapes are likely is critical for guiding field research and identifying the 
likely location and extent of anthropogenic modification. 

On Ofu and Olosega, classification of the composite datasets appeared to 
be effective in identifying areas of likely anthropogenic modification. Because 
there are a limited number of known anthropogenic landscapes on Tutuila, 
it is impossible to complete a confusion matrix or generate the precision 
and sensitivity of the model; rather, the model provides data on the likely 
distribution of anthropogenic alteration on the island. On Tutuila, the model 
suggested about 12% of the island has evidence of interior anthropogenic 
modification. This is 45% less than the known anthropogenic area on Ofu and 
Olosega, where (as noted earlier) the classifications typically overpredicted 
anthropogenic area. If total anthropogenic area corresponds with population 
(Quintus this issue) it might suggest that population density in the uplands 
of Tutuila was lower than on Ofu and Olosega, yet because of island size 
total populations in the interior may have been about five times greater 
than on Ofu and Olosega, assuming comparable agricultural practices. In 
addition to having a smaller area anthropogenically modified on Tutuila, 
potential anthropogenic areas also appear to be more dispersed. This is 
particularly true on the eastern portion of the island, where most research has 
been done. The western portion of the island is less incised and has larger 
areas of low slope, which are ideal for anthropogenic modification. While 
these western anthropogenic areas are the most extensive on Tutuila, the 
largest anthropogenic area is still approximately the same size as the largest 
anthropogenic area on Olosega, because the rugged topography on Tutuila 
limits further growth. 

* * *
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While the methods reported here will not replace careful pedestrian survey, 
they may help focus initial survey to areas that are most likely to be 
anthropogenic. In addition, these methods can provide initial estimates of 
the size and distribution of anthropogenic areas. When compared to a simple 
slope-based classification, classifying using composite datasets that include 
the hypsometric index improves predictions of anthropogenic landscapes. The 
inclusion of the hypsometric index is particularly useful in areas where slopes 
are greater than expected for an anthropogenic area. While this methodology 
was tested exclusively in American Samoa, it is likely that it will work in any 
area where anthropogenic modification has resulted in topographic change.

While most anthropogenic areas on Ofu and Olosega are already well 
documented through careful digital and/or pedestrian survey, the results of 
this classification suggest there may be at least one more anthropogenic area. 
All known anthropogenic areas were identified to some degree, with the 
cores being the best identified and periphery areas being only sporadically 
identified. On Tutuila, the absence of detailed data did not allow for a full 
confusion matrix of results, yet the classification did highlight several areas 
of known or suspected anthropogenic modification. Among the results, it is 
clear that anthropogenically modified areas on Tutuila are generally smaller 
than those on Ofu and Olosega and more dispersed over the large island. This 
is likely a result of the rugged, deeply dissected topography.
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ABSTRACT

Aerial LiDAR data offers a valuable tool in locating ancient anthropogenic landscapes 
around the world. This technology is particularly ideal in places where thick vegetation 
obscures the ground surface, reducing the utility of satellite imagery. On the islands 
of American Samoa, many interior anthropogenic landscapes remain unsurveyed, 
largely because the terrain makes it difficult and there is only general knowledge 
of where the anthropogenic modification may have existed. Aerial LiDAR flown 
in 2012 is proving to be a valuable tool in locating these prehistoric anthropogenic 
areas, yet improvements can be made on the methodology. This paper provides 
an unsupervised classification method to identify anthropogenic landscapes based 
on slope and hypsometric index: a topographic measure of roughness. Areas of 
American Samoa with known anthropogenic modifications were used to develop the 
classification techniques, which were then extended to areas where anthropogenic 
landscapes are undocumented and unexplored. The findings presented here suggest 
that interior anthropogenic patterns may be strongly dependent on island topography.

Keywords: LiDAR, unsupervised classification, hypsometry, American Samoa
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